An Algorithm to Find Frequent Concepts of a Formal Context with Taxonomy
نویسندگان
چکیده
Formal Concept Analysis (FCA) considers attributes as a non-ordered set. This is appropriate when the data set is not structured. When an attribute taxonomy exists, existing techniques produce a completed context with all attributes deduced from the taxonomy. Usual algorithms can then be applied on the completed context for finding frequent concepts, but the results systematically contain redundant information. This article describes an algorithm which allows the frequent concepts of a formal context with taxonomy to be computed. It works on a non-completed context and uses the taxonomy information when needed. The results avoid the redundancy problem with equivalent performance.
منابع مشابه
A Parameterized Algorithm for Exploring Concept Lattices
Kuznetsov shows that Formal Concept Analysis (FCA) is a natural framework for learning from positive and negative examples. Indeed, the results of learning from positive examples (respectively negative examples) are sets of frequent concepts with respect to a minimal support, whose extent contains only positive examples (respectively negative examples). In terms of association rules, the above ...
متن کاملInvestigate Factors Affecting on the Performance of Agricultural Machinery Companies Based on Taxonomy Algorithm
Taxonomy(general), the practice and science of classification of things or concepts, including the principles that underlie such classification. Economic taxonomy, a system of classification for economic activity. The main objective of the study was to find whether financial ratios affect the performance of the Agricultural Machinery companies in Iran. A firm performance evaluation and its comp...
متن کاملTGC-Tree: An Online Algorithm Tracing Closed Itemset and Transaction Set Simultaneously
Finding Association Rules is a classical data mining task. The most critical part of Association Rules Mining is finding the frequent itemsets in the database. Since the introduce of the famouse Apriori algorithm [14], many others have been proposed to find the frequent itemsets. Among all the algorithms, the approach of mining closed itemsets has arisen a lot of interests in data mining commun...
متن کاملMining Frequent Patterns in Uncertain and Relational Data Streams using the Landmark Windows
Todays, in many modern applications, we search for frequent and repeating patterns in the analyzed data sets. In this search, we look for patterns that frequently appear in data set and mark them as frequent patterns to enable users to make decisions based on these discoveries. Most algorithms presented in the context of data stream mining and frequent pattern detection, work either on uncertai...
متن کاملQabusnama of Persian Architecture: Rethinking the history of making Gunbad-i Qābus
This study aims to investigate the origins, concepts, and symbolic and formal functions of the Gunbad-i Qābus tomb-tower based on interpretation of its inscription. This hermeneutic analysis addresses the historical context of the building formation, rethinking the concepts presented in its ten-piece inscription using philological methods, and compares it with the inscriptions of some other to...
متن کامل